def aStarAlgo(start_node, stop_node): open_set = set(start_node) closed_set = set() g = {} #store distance from starting node parents = {}# parents contains an adjacency map of all nodes #ditance of starting node from itself is zero g[start_node] = 0 #start_node is root node i.e it has no parent nodes #so start_node is set to its own parent node parents[start_node] = start_node while len(open_set) > 0: n = None #node with lowest f() is found for v in open_set: if n == None or g[v] + heuristic(v) < g[n] + heuristic(n): n = v if n == stop_node or Graph_nodes[n] == None: pass else: for (m, weight) in get_neighbors(n): #nodes 'm' not in first and last set are added to first #n is set its parent if m not in open_set and m not in closed_set: open_set.add(m) parents[m] = n g[m] = g[n] + weight #for each node m,compare its distance from start i.e g(m) to the #from start through n node else: if g[m] > g[n] + weight: #update g(m) g[m] = g[n] + weight #change parent of m to n parents[m] = n #if m in closed set,remove and add to open if m in closed_set: closed_set.remove(m) open_set.add(m) if n == None: print('Path does not exist!') return None # if the current node is the stop_node # then we begin reconstructin the path from it to the start_node if n == stop_node: path = [] while parents[n] != n: path.append(n) n = parents[n] path.append(start_node) path.reverse() print('Path found: {}'.format(path)) return path # remove n from the open_list, and add it to closed_list # because all of his neighbors were inspected open_set.remove(n) closed_set.add(n) print('Path does not exist!') return None #define fuction to return neighbor and its distance #from the passed node def get_neighbors(v): if v in Graph_nodes: return Graph_nodes[v] else: return None #for simplicity we ll consider heuristic distances given #and this function returns heuristic distance for all nodes def heuristic(n): H_dist = { 'START': 550, 'A': 550, 'B': 450, 'C': 510, 'D': 325, 'E': 415, 'F': 235, 'G': 455, 'H': 400, 'I': 325, 'J': 240, 'K': 170, 'L': 205, 'GOAL': 0, } return H_dist[n] #Input goes here Graph_nodes = { 'START': [('A', 120), ('I', 142), ('G', 77)], 'A': [('B', 113)], 'B': [('C', 72)], 'C': [('D', 77)], 'D': [('E', 122)], 'E': [('F', 126)], 'F': [('L', 148), ('K', 140)], 'G': [('H', 71)], 'H': [('I', 122)], 'I': [('J', 111), ('L', 99)], 'J': [('GOAL', 213)], 'K': [('GOAL', 105)], 'L': [('K', 99)], } aStarAlgo('START', 'GOAL')