#include "bits/stdc++.h"
using namespace std;
#define dbg(var) cout<<#var<<"="<<var<<" "
#define nl cout<<"\n"
#define fr(i,n) for(int i=0;i<n;i++)
#define rep(i,a,n) for(int i=a;i<=n;i++)
#define fast ios::sync_with_stdio(false);cin.tie(0);
#define vi vector<int>
#define vvi vector<vi>
#define pb push_back
#define fa(v) for(auto &i:v)
#define all(v) v.begin(),v.end()
#define sz(v) (int)(v.size())
//#define int long long

template<const int &MOD>
struct _m_int {
    int val;
 
    _m_int(int64_t v = 0) {
        if (v < 0) v = v % MOD + MOD;
        if (v >= MOD) v %= MOD;
        val = v;
    }
 
    static int mod_inv(int a, int m = MOD) {
        // https://en.wikipedia.org/wiki/Extended_Euclidean_algorithm#Example
        int g = m, r = a, x = 0, y = 1;
 
        while (r != 0) {
            int q = g / r;
            g %= r; swap(g, r);
            x -= q * y; swap(x, y);
        }
 
        return x < 0 ? x + m : x;
    }
 
    explicit operator int() const { return val; }
    explicit operator int64_t() const { return val; }
 
    _m_int& operator+=(const _m_int &other) {
        val -= MOD - other.val;
        if (val < 0) val += MOD;
        return *this;
    }
 
    _m_int& operator-=(const _m_int &other) {
        val -= other.val;
        if (val < 0) val += MOD;
        return *this;
    }
 
    static unsigned fast_mod(uint64_t x, unsigned m = MOD) {
#if !defined(_WIN32) || defined(_WIN64)
        return x % m;
#endif
        // Optimized mod for Codeforces 32-bit machines.
        // x must be less than 2^32 * m for this to work, so that x / m fits in a 32-bit integer.
        unsigned x_high = x >> 32, x_low = (unsigned) x;
        unsigned quot, rem;
        asm("divl %4\n"
            : "=a" (quot), "=d" (rem)
            : "d" (x_high), "a" (x_low), "r" (m));
        return rem;
    }
 
    _m_int& operator*=(const _m_int &other) {
        val = fast_mod((uint64_t) val * other.val);
        return *this;
    }
 
    _m_int& operator/=(const _m_int &other) {
        return *this *= other.inv();
    }
 
    friend _m_int operator+(const _m_int &a, const _m_int &b) { return _m_int(a) += b; }
    friend _m_int operator-(const _m_int &a, const _m_int &b) { return _m_int(a) -= b; }
    friend _m_int operator*(const _m_int &a, const _m_int &b) { return _m_int(a) *= b; }
    friend _m_int operator/(const _m_int &a, const _m_int &b) { return _m_int(a) /= b; }
 
    _m_int& operator++() {
        val = val == MOD - 1 ? 0 : val + 1;
        return *this;
    }
 
    _m_int& operator--() {
        val = val == 0 ? MOD - 1 : val - 1;
        return *this;
    }
 
    _m_int operator++(int) { _m_int before = *this; ++*this; return before; }
    _m_int operator--(int) { _m_int before = *this; --*this; return before; }
 
    _m_int operator-() const {
        return val == 0 ? 0 : MOD - val;
    }
 
    bool operator==(const _m_int &other) const { return val == other.val; }
    bool operator!=(const _m_int &other) const { return val != other.val; }
 
    _m_int inv() const {
        return mod_inv(val);
    }
 
    _m_int pow(int64_t p) const {
        if (p < 0)
            return inv().pow(-p);
 
        _m_int a = *this, result = 1;
 
        while (p > 0) {
            if (p & 1)
                result *= a;
 
            a *= a;
            p >>= 1;
        }
 
        return result;
    }
 
    friend ostream& operator<<(ostream &os, const _m_int &m) {
        return os << m.val;
    }
};
 
extern const int MOD = 7340033;
using mod_int = _m_int<MOD>;
 
 
template<const int &MOD>
struct NTT {
    using ntt_int = _m_int<MOD>;
 
    vector<ntt_int> roots = {0, 1};
    vector<int> bit_reverse;
    int max_size = -1;
    ntt_int root;
 
    void reset() {
        roots = {0, 1};
        max_size = -1;
    }
 
    static bool is_power_of_two(int n) {
        return (n & (n - 1)) == 0;
    }
 
    static int round_up_power_two(int n) {
        while (n & (n - 1))
            n = (n | (n - 1)) + 1;
 
        return max(n, 1);
    }
 
    // Given n (a power of two), finds k such that n == 1 << k.
    static int get_length(int n) {
        assert(is_power_of_two(n));
        return __builtin_ctz(n);
    }
 
    // Rearranges the indices to be sorted by lowest bit first, then second lowest, etc., rather than highest bit first.
    // This makes even-odd div-conquer much easier.
    void bit_reorder(int n, vector<ntt_int> &values) {
        if ((int) bit_reverse.size() != n) {
            bit_reverse.assign(n, 0);
            int length = get_length(n);
 
            for (int i = 1; i < n; i++)
                bit_reverse[i] = (bit_reverse[i >> 1] >> 1) | ((i & 1) << (length - 1));
        }
 
        for (int i = 0; i < n; i++)
            if (i < bit_reverse[i])
                swap(values[i], values[bit_reverse[i]]);
    }
 
    void find_root() {
        max_size = 1 << __builtin_ctz(MOD - 1);
        root = 2;
 
        // Find a max_size-th primitive root of MOD.
        while (!(root.pow(max_size) == 1 && root.pow(max_size / 2) != 1))
            root++;
    }
 
    void prepare_roots(int n) {
        if (max_size < 0)
            find_root();
 
        assert(n <= max_size);
 
        if ((int) roots.size() >= n)
            return;
 
        int length = get_length(roots.size());
        roots.resize(n);
 
        // The roots array is set up such that for a given power of two n >= 2, roots[n / 2] through roots[n - 1] are
        // the first half of the n-th primitive roots of MOD.
        while (1 << length < n) {
            // z is a 2^(length + 1)-th primitive root of MOD.
            ntt_int z = root.pow(max_size >> (length + 1));
 
            for (int i = 1 << (length - 1); i < 1 << length; i++) {
                roots[2 * i] = roots[i];
                roots[2 * i + 1] = roots[i] * z;
            }
 
            length++;
        }
    }
 
    void fft_iterative(int N, vector<ntt_int> &values) {
        assert(is_power_of_two(N));
        prepare_roots(N);
        bit_reorder(N, values);
 
        for (int n = 1; n < N; n *= 2)
            for (int start = 0; start < N; start += 2 * n)
                for (int i = 0; i < n; i++) {
                    ntt_int even = values[start + i];
                    ntt_int odd = values[start + n + i] * roots[n + i];
                    values[start + n + i] = even - odd;
                    values[start + i] = even + odd;
                }
    }
 
    void invert_fft(int N, vector<ntt_int> &values) {
        ntt_int inv_N = ntt_int(N).inv();
 
        for (int i = 0; i < N; i++)
            values[i] *= inv_N;
 
        reverse(values.begin() + 1, values.end());
        fft_iterative(N, values);
    }
 
    const int FFT_CUTOFF = 150;
 
    // Note: `circular = true` can be used for a 2x speedup when only the `max(n, m) - min(n, m) + 1` fully overlapping
    // ranges are needed. It computes results using indices modulo the power-of-two FFT size; see the brute force below.
    template<typename T>
    vector<T> mod_multiply(const vector<T> &_left, const vector<T> &_right, bool circular = false) {
        if (_left.empty() || _right.empty())
            return {};
 
        vector<ntt_int> left(_left.begin(), _left.end());
        vector<ntt_int> right(_right.begin(), _right.end());
 
        int n = left.size();
        int m = right.size();
 
        int output_size = circular ? round_up_power_two(max(n, m)) : n + m - 1;
 
        // Brute force when either n or m is small enough.
        if (min(n, m) < FFT_CUTOFF) {
            auto &&mod_output_size = [&](int x) {
                return x < output_size ? x : x - output_size;
            };
 
            static const uint64_t U64_BOUND = numeric_limits<uint64_t>::max() - (uint64_t) MOD * MOD;
            vector<uint64_t> result(output_size, 0);
 
            for (int i = 0; i < n; i++)
                for (int j = 0; j < m; j++) {
                    int index = mod_output_size(i + j);
                    result[index] += (uint64_t) (int64_t) left[i] * (int64_t) right[j];
 
                    if (result[index] > U64_BOUND)
                        result[index] %= MOD;
                }
 
            for (uint64_t &x : result)
                if (x >= MOD)
                    x %= MOD;
 
            return vector<T>(result.begin(), result.end());
        }
 
        int N = round_up_power_two(output_size);
        left.resize(N, 0);
        right.resize(N, 0);
 
        if (left == right) {
            fft_iterative(N, left);
            right = left;
        } else {
            fft_iterative(N, left);
            fft_iterative(N, right);
        }
 
        for (int i = 0; i < N; i++)
            left[i] *= right[i];
 
        invert_fft(N, left);
        return vector<T>(left.begin(), left.begin() + output_size);
    }
 
    template<typename T>
    vector<T> mod_power(const vector<T> &v, int exponent) {
        assert(exponent >= 0);
        vector<T> result = {1};
 
        if (exponent == 0)
            return result;
 
        for (int k = 31 - __builtin_clz(exponent); k >= 0; k--) {
            result = mod_multiply(result, result);
 
            if (exponent >> k & 1)
                result = mod_multiply(result, v);
        }
 
        return result;
    }
 
    template<typename T>
    vector<T> mod_multiply_all(const vector<vector<T>> &polynomials) {
        if (polynomials.empty())
            return {1};
 
        struct compare_size {
            bool operator()(const vector<T> &x, const vector<T> &y) {
                return x.size() > y.size();
            }
        };
 
        priority_queue<vector<T>, vector<vector<T>>, compare_size> pq(polynomials.begin(), polynomials.end());
 
        while (pq.size() > 1) {
            vector<T> a = pq.top(); pq.pop();
            vector<T> b = pq.top(); pq.pop();
            pq.push(mod_multiply(a, b));
        }
 
        return pq.top();
    }
};
 
NTT<MOD> ntt;
 
 
auto random_address = [] { char *p = new char; delete p; return (uint64_t) p; };
mt19937_64 rng(chrono::steady_clock::now().time_since_epoch().count() * (random_address() | 1));

const int MX=1e6+10;
int mult(int a,int b){return (1ll*a*b)%MOD;}
int fact[MX],inv[MX],invfact[MX];
void init_INV(){
	fact[0] = invfact[0] = fact[1] = invfact[1] = inv[1] = 1;
    for (int i = 2; i < MX; i++) {
        fact[i] = mult(fact[i - 1], i);
        inv[i] = mult(inv[MOD % i], MOD - MOD / i);
        invfact[i] = mult(invfact[i - 1], inv[i]);
    }
}
int ncr(int n,int r){
	n = 1LL * fact[n] * invfact[n-r] % MOD;
	return  1LL  * n * invfact[r] % MOD;
}
int fpw(int a,int b){
	int r = 1; a %= MOD; 
	if(a < 0)a += MOD;
	for(;b;b>>=1){
		if(b & 1) 
			r = 1LL * r * a % MOD;
		
			a = 1LL * a * a % MOD;
		
	}
	return r;
}
int inverse(int a){return fpw(a,MOD-2);}
int32_t main()
{
	init_INV();
    int n,d1,d2,d3; cin >> n >> d1 >> d2 >> d3;
    mod_int ans = 0;	
    vector<mod_int> v1,v2;
    for(int i=0; i<=d2; i++) {
    	v1.push_back((mod_int) ncr(d2,i) * (i&1?-1:1));
    }

    for(int i=0;i<=d1; i++){
    	v2.push_back((mod_int) ncr(d1,i) );
    }
    for(auto xx:v2) cout << xx << "\n";
    for(auto xx:v1) cout << xx << "\n";
    vector<mod_int> prod = ntt.mod_multiply(v1,v2);
    // for(auto x: prod) cout <<  x << " " ;
    int sz = prod.size();
    for(int i=0;i<sz;i++){
    	ans = ans + (fpw(1LL * d3 + 2*i - d1 - d2, n) * prod[i]); 
    }
    ans *= inverse(fpw(2 , d1 + d2));
    cout << ans;


}