#include "bits/stdc++.h"
using namespace std;
#define dbg(var) cout<<#var<<"="<<var<<" "
#define nl cout<<"\n"
#define fr(i,n) for(int i=0;i<n;i++)
#define rep(i,a,n) for(int i=a;i<=n;i++)
#define fast ios::sync_with_stdio(false);cin.tie(0);
#define vi vector<int>
#define vvi vector<vi>
#define pb push_back
#define fa(v) for(auto &i:v)
#define all(v) v.begin(),v.end()
#define sz(v) (int)(v.size())
//#define int long long
template<const int &MOD>
struct _m_int {
int val;
_m_int(int64_t v = 0) {
if (v < 0) v = v % MOD + MOD;
if (v >= MOD) v %= MOD;
val = v;
}
static int mod_inv(int a, int m = MOD) {
// https://en.wikipedia.org/wiki/Extended_Euclidean_algorithm#Example
int g = m, r = a, x = 0, y = 1;
while (r != 0) {
int q = g / r;
g %= r; swap(g, r);
x -= q * y; swap(x, y);
}
return x < 0 ? x + m : x;
}
explicit operator int() const { return val; }
explicit operator int64_t() const { return val; }
_m_int& operator+=(const _m_int &other) {
val -= MOD - other.val;
if (val < 0) val += MOD;
return *this;
}
_m_int& operator-=(const _m_int &other) {
val -= other.val;
if (val < 0) val += MOD;
return *this;
}
static unsigned fast_mod(uint64_t x, unsigned m = MOD) {
#if !defined(_WIN32) || defined(_WIN64)
return x % m;
#endif
// Optimized mod for Codeforces 32-bit machines.
// x must be less than 2^32 * m for this to work, so that x / m fits in a 32-bit integer.
unsigned x_high = x >> 32, x_low = (unsigned) x;
unsigned quot, rem;
asm("divl %4\n"
: "=a" (quot), "=d" (rem)
: "d" (x_high), "a" (x_low), "r" (m));
return rem;
}
_m_int& operator*=(const _m_int &other) {
val = fast_mod((uint64_t) val * other.val);
return *this;
}
_m_int& operator/=(const _m_int &other) {
return *this *= other.inv();
}
friend _m_int operator+(const _m_int &a, const _m_int &b) { return _m_int(a) += b; }
friend _m_int operator-(const _m_int &a, const _m_int &b) { return _m_int(a) -= b; }
friend _m_int operator*(const _m_int &a, const _m_int &b) { return _m_int(a) *= b; }
friend _m_int operator/(const _m_int &a, const _m_int &b) { return _m_int(a) /= b; }
_m_int& operator++() {
val = val == MOD - 1 ? 0 : val + 1;
return *this;
}
_m_int& operator--() {
val = val == 0 ? MOD - 1 : val - 1;
return *this;
}
_m_int operator++(int) { _m_int before = *this; ++*this; return before; }
_m_int operator--(int) { _m_int before = *this; --*this; return before; }
_m_int operator-() const {
return val == 0 ? 0 : MOD - val;
}
bool operator==(const _m_int &other) const { return val == other.val; }
bool operator!=(const _m_int &other) const { return val != other.val; }
_m_int inv() const {
return mod_inv(val);
}
_m_int pow(int64_t p) const {
if (p < 0)
return inv().pow(-p);
_m_int a = *this, result = 1;
while (p > 0) {
if (p & 1)
result *= a;
a *= a;
p >>= 1;
}
return result;
}
friend ostream& operator<<(ostream &os, const _m_int &m) {
return os << m.val;
}
};
extern const int MOD = 7340033;
using mod_int = _m_int<MOD>;
template<const int &MOD>
struct NTT {
using ntt_int = _m_int<MOD>;
vector<ntt_int> roots = {0, 1};
vector<int> bit_reverse;
int max_size = -1;
ntt_int root;
void reset() {
roots = {0, 1};
max_size = -1;
}
static bool is_power_of_two(int n) {
return (n & (n - 1)) == 0;
}
static int round_up_power_two(int n) {
while (n & (n - 1))
n = (n | (n - 1)) + 1;
return max(n, 1);
}
// Given n (a power of two), finds k such that n == 1 << k.
static int get_length(int n) {
assert(is_power_of_two(n));
return __builtin_ctz(n);
}
// Rearranges the indices to be sorted by lowest bit first, then second lowest, etc., rather than highest bit first.
// This makes even-odd div-conquer much easier.
void bit_reorder(int n, vector<ntt_int> &values) {
if ((int) bit_reverse.size() != n) {
bit_reverse.assign(n, 0);
int length = get_length(n);
for (int i = 1; i < n; i++)
bit_reverse[i] = (bit_reverse[i >> 1] >> 1) | ((i & 1) << (length - 1));
}
for (int i = 0; i < n; i++)
if (i < bit_reverse[i])
swap(values[i], values[bit_reverse[i]]);
}
void find_root() {
max_size = 1 << __builtin_ctz(MOD - 1);
root = 2;
// Find a max_size-th primitive root of MOD.
while (!(root.pow(max_size) == 1 && root.pow(max_size / 2) != 1))
root++;
}
void prepare_roots(int n) {
if (max_size < 0)
find_root();
assert(n <= max_size);
if ((int) roots.size() >= n)
return;
int length = get_length(roots.size());
roots.resize(n);
// The roots array is set up such that for a given power of two n >= 2, roots[n / 2] through roots[n - 1] are
// the first half of the n-th primitive roots of MOD.
while (1 << length < n) {
// z is a 2^(length + 1)-th primitive root of MOD.
ntt_int z = root.pow(max_size >> (length + 1));
for (int i = 1 << (length - 1); i < 1 << length; i++) {
roots[2 * i] = roots[i];
roots[2 * i + 1] = roots[i] * z;
}
length++;
}
}
void fft_iterative(int N, vector<ntt_int> &values) {
assert(is_power_of_two(N));
prepare_roots(N);
bit_reorder(N, values);
for (int n = 1; n < N; n *= 2)
for (int start = 0; start < N; start += 2 * n)
for (int i = 0; i < n; i++) {
ntt_int even = values[start + i];
ntt_int odd = values[start + n + i] * roots[n + i];
values[start + n + i] = even - odd;
values[start + i] = even + odd;
}
}
void invert_fft(int N, vector<ntt_int> &values) {
ntt_int inv_N = ntt_int(N).inv();
for (int i = 0; i < N; i++)
values[i] *= inv_N;
reverse(values.begin() + 1, values.end());
fft_iterative(N, values);
}
const int FFT_CUTOFF = 150;
// Note: `circular = true` can be used for a 2x speedup when only the `max(n, m) - min(n, m) + 1` fully overlapping
// ranges are needed. It computes results using indices modulo the power-of-two FFT size; see the brute force below.
template<typename T>
vector<T> mod_multiply(const vector<T> &_left, const vector<T> &_right, bool circular = false) {
if (_left.empty() || _right.empty())
return {};
vector<ntt_int> left(_left.begin(), _left.end());
vector<ntt_int> right(_right.begin(), _right.end());
int n = left.size();
int m = right.size();
int output_size = circular ? round_up_power_two(max(n, m)) : n + m - 1;
// Brute force when either n or m is small enough.
if (min(n, m) < FFT_CUTOFF) {
auto &&mod_output_size = [&](int x) {
return x < output_size ? x : x - output_size;
};
static const uint64_t U64_BOUND = numeric_limits<uint64_t>::max() - (uint64_t) MOD * MOD;
vector<uint64_t> result(output_size, 0);
for (int i = 0; i < n; i++)
for (int j = 0; j < m; j++) {
int index = mod_output_size(i + j);
result[index] += (uint64_t) (int64_t) left[i] * (int64_t) right[j];
if (result[index] > U64_BOUND)
result[index] %= MOD;
}
for (uint64_t &x : result)
if (x >= MOD)
x %= MOD;
return vector<T>(result.begin(), result.end());
}
int N = round_up_power_two(output_size);
left.resize(N, 0);
right.resize(N, 0);
if (left == right) {
fft_iterative(N, left);
right = left;
} else {
fft_iterative(N, left);
fft_iterative(N, right);
}
for (int i = 0; i < N; i++)
left[i] *= right[i];
invert_fft(N, left);
return vector<T>(left.begin(), left.begin() + output_size);
}
template<typename T>
vector<T> mod_power(const vector<T> &v, int exponent) {
assert(exponent >= 0);
vector<T> result = {1};
if (exponent == 0)
return result;
for (int k = 31 - __builtin_clz(exponent); k >= 0; k--) {
result = mod_multiply(result, result);
if (exponent >> k & 1)
result = mod_multiply(result, v);
}
return result;
}
template<typename T>
vector<T> mod_multiply_all(const vector<vector<T>> &polynomials) {
if (polynomials.empty())
return {1};
struct compare_size {
bool operator()(const vector<T> &x, const vector<T> &y) {
return x.size() > y.size();
}
};
priority_queue<vector<T>, vector<vector<T>>, compare_size> pq(polynomials.begin(), polynomials.end());
while (pq.size() > 1) {
vector<T> a = pq.top(); pq.pop();
vector<T> b = pq.top(); pq.pop();
pq.push(mod_multiply(a, b));
}
return pq.top();
}
};
NTT<MOD> ntt;
auto random_address = [] { char *p = new char; delete p; return (uint64_t) p; };
mt19937_64 rng(chrono::steady_clock::now().time_since_epoch().count() * (random_address() | 1));
const int MX=1e6+10;
int mult(int a,int b){return (1ll*a*b)%MOD;}
int fact[MX],inv[MX],invfact[MX];
void init_INV(){
fact[0] = invfact[0] = fact[1] = invfact[1] = inv[1] = 1;
for (int i = 2; i < MX; i++) {
fact[i] = mult(fact[i - 1], i);
inv[i] = mult(inv[MOD % i], MOD - MOD / i);
invfact[i] = mult(invfact[i - 1], inv[i]);
}
}
int ncr(int n,int r){
n = 1LL * fact[n] * invfact[n-r] % MOD;
return 1LL * n * invfact[r] % MOD;
}
int fpw(int a,int b){
int r = 1; a %= MOD;
if(a < 0)a += MOD;
for(;b;b>>=1){
if(b & 1)
r = 1LL * r * a % MOD;
a = 1LL * a * a % MOD;
}
return r;
}
int inverse(int a){return fpw(a,MOD-2);}
int32_t main()
{
init_INV();
int n,d1,d2,d3; cin >> n >> d1 >> d2 >> d3;
mod_int ans = 0;
vector<mod_int> v1,v2;
for(int i=0; i<=d2; i++) {
v1.push_back((mod_int) ncr(d2,i) * (i&1?-1:1));
}
for(int i=0;i<=d1; i++){
v2.push_back((mod_int) ncr(d1,i) );
}
for(auto xx:v2) cout << xx << "\n";
for(auto xx:v1) cout << xx << "\n";
vector<mod_int> prod = ntt.mod_multiply(v1,v2);
// for(auto x: prod) cout << x << " " ;
int sz = prod.size();
for(int i=0;i<sz;i++){
ans = ans + (fpw(1LL * d3 + 2*i - d1 - d2, n) * prod[i]);
}
ans *= inverse(fpw(2 , d1 + d2));
cout << ans;
}